Development of transient outward currents coupled with Ca2+-induced Ca2+ release mediates oscillatory membrane potential in ascidian muscle cells.

نویسندگان

  • Koichi Nakajo
  • Yasushi Okamura
چکیده

Isolated ascidian Halocynthia roretzi blastomeres of the muscle lineage exhibit muscle cell-like excitability on differentiation despite the arrest of cell cleavage early in development. This characteristic provides a unique opportunity to track changes in ion channel expression during muscle cell differentiation. Here, we show that the intrinsic membrane property of ascidian cleavage-arrested muscle-type cells becomes oscillatory by expressing transient outward currents (I(to)) activated by Ca(2+)-induced Ca(2+) release (CICR) in a maturation-dependent manner. In current-clamp mode, most day 4 (72 h after fertilization) cleavage-arrested muscle cells exhibited an oscillatory membrane potential of -20 mV at 15 Hz, whereas most day 3 (48 h after fertilization) cells exhibited a spiking pattern. In voltage-clamp mode, the day 4 cells exhibited prominent transient outward currents that were not present in day 3 cells. I(to) was abolished by the application of 10 mM caffeine, implying that CICR was involved in I(to) activation. I(to) was based on K(+) efflux and sensitive to tetraethylammonium and some Ca(2+)-activated K(+) channel inhibitors. We found a 60-pS single channel conductance that was activated by local Ca(2+) release in ascidian muscle cell. Voltage-clamp recording with an oscillatory waveform as a command pulse showed that CICR-activated K(+) currents were activated during the falling phase of the membrane potential oscillation. These results suggest that developmental expression of CICR-activated K(+) current plays a role in the maturation of larval locomotion by modifying the intrinsic membrane excitability of muscle cells.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Co-ordinated modulation of Ca2+ and K+ currents during ascidian muscle development.

1. The development of Ca2+ and K+ currents was studied in ascidian muscle cells at twelve embryonic stages from gastrulation to the mature cell, a period of 24 h. A high degree of co-ordination occurs between the development of the inwardly rectifying K+ current (IK(IR)), which sets the resting potential, and Ca2+ and outward K+ currents, which determine action potential waveform. 2. At neurula...

متن کامل

Current fluctuations and oscillations in smooth muscle cells from hog carotid artery. Role of the sarcoplasmic reticulum.

Electrical activity of enzymatically isolated, smooth muscle cells from hog carotid arteries was recorded under current clamp and voltage clamp. Under the experimental conditions, membrane potential usually was not stable, and spontaneous hyperpolarizing transients of approximately 100-msec duration were recorded. The amplitude of the transients was markedly voltage dependent and ranged from ab...

متن کامل

Ca sparks and BK currents in gallbladder myocytes: role in CCK-induced response

Pozo, Marı́a J., Guillermo J. Pérez, Mark T. Nelson, and Gary M. Mawe. Ca2 sparks and BK currents in gallbladder myocytes: role in CCK-induced response. Am J Physiol Gastrointest Liver Physiol 282: G165–G174, 2002. First published October 24, 2001; 10.1152/ajpgi.00326. 2002.—We sought to elucidate the regulation of gallbladder smooth muscle (GBSM) excitability by localized Ca2 release events (sp...

متن کامل

Ca2+-induced Ca2+ release in cardiac and smooth muscle cells.

Ca(2+) influx across plasma membranes may trigger Ca(2+) release by activating ryanodine-sensitive receptors in the sarcoplasmic reticulum. This process is called Ca(2+)-induced Ca(2+) release, and may be important in regulating cytosolic Ca(2+) concentration ([Ca(2+)](i)). In cardiac cells, the initial [Ca(2+)](i) increase, caused by L-type Ca(2+) current, is profoundly amplified with Ca(2+) r...

متن کامل

Ca2+-activated K+ currents in rat locus coeruleus neurons induced by experimental ischemia, anoxia, and hypoglycemia.

Ca2+-activated K+ currents in rat locus coeruleus neurons induced by experimental ischemia, anoxia, and hypoglycemia. J. Neurophysiol. 78: 2674-2681, 1997. The effects of metabolic inhibition on membrane currents and N-methyl--aspartic acid (NMDA)-induced currents were investigated in dissociated rat locus coeruleus (LC) neurons by using the nystatin perforated patch recording mode under voltag...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of neurophysiology

دوره 92 2  شماره 

صفحات  -

تاریخ انتشار 2004